Bioimaging Laboratory

The laboratory focuses on the analysis of biological processes occurring in living cells and tissues, using various techniques of light and electron microscopy. The work conducted in the laboratory focuses on changes in cell physiology under the influence of various factors and are aimed at discovering the mechanisms of action of bio-active substances and developing new diagnostic tests. We visualize fixed and stained specimens and living cells using in vivo microscopy. We have experience in imaging live laboratory mice expressing fluorescent proteins. We also provide services including the preparation of biological material for routine histopathological analyzes and for imaging in SEM, STEM and TEM.We provide support in all stages of imaging – from planning the experiment, through sample preparation, image acquisition, data analysis and visualization.

Contact: inquiries@port.lukasiewicz.gov.pl

  • imaging of fixed cell cultures and tissue preparations using wide field microscopy, confocal, two-photon and scanning electron microscopy,
  • live imaging of cultured cells and tissue preparations using transmitted light and fluorescence (controlled environmental conditions: temperature, humidity, specified CO2 and O2 levels),
  • quantitative analysis of microscopic images (e.g. distribution, signal intensity, morphometry and motility of examined objects),
  • visualizations and 3D reconstructions of microscopic images
  • preparation of histological slides (frozen and from paraffin-embedded tissues)
  • routine histochemical (e.g. hematoxylin/eosin) and immunofluorescence staining
  • laser microdissection for the analysis of proteins, DNA or RNA from selected areas or cells in histological preparations
  • preparation of live sections from soft tissues using a vibratome (i.e. brain)
  • analysis of material surface using confocal microscopy and laser reflection
  • training in microscopy and image analysis

Microscopes:

Zeiss Cell Observer SD confocal microscope

  • inverted stand,
  • Yokogawa CSU-X1A 5000 spinning disk module,
  • lasers: 405, 488, 561, 639 nm,
  • 2 EMCCD QImagingRolera EM-C2 cameras (Dual Camera),
  • objectives: 10x (NA 0.30), 20x (NA 0.4 LD), 25x (NA 0.80 W), 40x (NA 0.6 LD; NA 1.20 W; NA 1.4 Oil), 63x (NA 1.20 W; NA 1.4 Oil), 100x (NA 1.46 Oil),
  • motorized scanning table with Definite Focus module,
  • XLmulti S1 incubator, heating insert for 96-well plates,
  • temperature, O2 and CO2 concentration controller;

Leica SP8 MP confocal microscope

  • upright stand,
  • conventional and resonant scanner (8 kHz),
  • VIS lasers: 405, 488, 552, 638 nm,
  • IR laser: Chameleon Vision II, femtosecond pulses, wavelength adjustable from 680-1080 nm,
  • detectors: 4 internal PMT, 1 HyD detector, 4 external NDD-PMT,
  • objectives: 10x (NA 0.40), 20x (NA 0.75), 25x (NA 0.95 W), 40x (NA 1.10 W; NA 1.3 Oil), 63x (NA 1.4 Oil ),
  • motorized scanning table,
  • temperature controller and heating insert for Petri dishes,
  • in-vivo imaging set-up for laboratory mice;

Auriga 60 Zeiss scanning electron microscope

  • cross-beam type with Cobra ion gun,
  • field emission, operation at voltage ~ 0.8-30 kV,
  • multi-channel gas injection system (GIS),
  • micromanipulator,
  • Quorum cryo module;
  • Leica DMi8 inverted microscope;
  • Leica DM1000 upright microscope;
  • Leica S8 APO stereoscopic microscope.

Sample processing for electron microscopy:

  • Leica HPM 100 high pressure freezing system,
  • Leica EM AFS2 automatic freeze substitution system,
  • Leica EM UC7 ultramicrotome,
  • Leica EM AC20 automatic contrasting system,
  • Leica EM ACE600 high vacuum coater,
  • Leica CPD300 dryer at the critical point,
  • Leica EM TP tissue processor.

Sample processing for histology:

  • Leica LMD 7000 laser microdissection system,
  • Leica VT1200S vibratome,
  • Sakura VIP 6 vacuum-pressure processor,
  • Sakura TEC5 manual paraffin embedding center,
  • Sakura Tissue-Tek Prisma automatic stainer,
  • Sakura Tissue-Tek Film Coverslipper,
  • Sakura Autosection rotary microtome,
  • Sakura CRYO 3 cryostat.

Cell culture:

  • Binder CB160 incubators,
  • MARS 1200 LABOGENE laminar chambers,
  • Centrifuges and other accessories.

Image analysis software:

  • Imaris 9 (Bitplane),
  • Huygens Professional (SVI),
  • Image-Pro Premier (Media Cybernetics),
  • SlideBook (3I).
  1. Kupczyk P, Simiczyjew A, Marczuk J, Dratkiewicz E, Beberok A, Rok J, Pieniazek M, Biecek P, Nevozhay D, Slowikowski B, Chodaczek G, Wrzesniok D, Nowak D, Donizy P. PARP1 as a Marker of an Aggressive Clinical Phenotype in Cutaneous Melanoma-A Clinical and an In Vitro Study. Cells. 2021 Jan 31;10(2):286. org/10.3390/cells10020286.
  2. Thorat ND, Dworniczek E, Brennan G, Chodaczek G, Mouras R, Gascón Pérez V, Silien C, Tofail SAM, Bauer J. Photo-responsive functional gold nanocapsules for inactivation of community-acquired, highly virulent, multidrug-resistant MRSA. J MaterChem B. 2021 Jan 28;9(3):846-856. org/10.1039/d0tb02047h.
  3. Krasowski G, Junka A, Paleczny J, Czajkowska J, Makomaska-Szaroszyk E, Chodaczek G, Majkowski M, Migdał P, Fijałkowski K, Kowalska-Krochmal B, Bartoszewicz M. In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-BasedAntisepticsagainstBiofilmFormed by WoundPathogens. Membranes (Basel). 2021 Jan 17;11(1):62. org/10.3390/membranes11010062.
  4. Chodaczek G, Pagni PP, Christoffersson G, Ratliff SS, Toporkiewicz M, Wegrzyn AS, von Herrath M. The effect of Toll-like receptor stimulation on the motility of regulatory T cells. J Autoimmun. 2021 Jan;116:102563. org/10.1016/j.jaut.2020.102563.
  5. Kulbacka J, Chodaczek G, Rossowska J, Szewczyk A, Saczko J, Bazylińska U. Investigating the photodynamic efficacy of chlorin e6 by millisecond pulses in metastatic melanoma cells. Bioelectrochemistry. 2020 Dec 29;138:107728. org/10.1016/j.bioelechem.2020.107728.
  6. Drabik D, Chodaczek G, Kraszewski S. Effect of Amyloid-β Monomers on Lipid Membrane Mechanical Parameters-Potential Implications for Mechanically Driven Neurodegeneration in Alzheimer’s Disease. Int J Mol Sci. 2020 Dec 22;22(1):E18. org/10.3390/ijms22010018.
  7. Drabik D, Chodaczek G, Kraszewski S, Langner M. Mechanical Properties Determination of DMPC, DPPC, DSPC, and HSPC Solid-Ordered Bilayers. Langmuir. 2020 Apr 14;36(14):3826-3835.org/10.1021/acs.langmuir.0c00475.
  8. Skulska K, Wegrzyn AS, Chelmonska-Soyta A, Chodaczek G. Impact of tissue enzymatic digestion on analysis of immune cells in mouse reproductive mucosa with a focus on γδ T cells. J ImmunolMethods. 2019 Nov;474:112665. org/10.1016/j.jim.2019.112665.
  9. Bazylińska U, Kulbacka J, Chodaczek G. Nanoemulsion Structural Design in Co-Encapsulation of Hybrid Multifunctional Agents: Influence of the Smart PLGA Polymers on the Nanosystem-Enhanced Delivery and Electro-Photodynamic Treatment. Pharmaceutics. 2019 Aug 11;11(8). pii: E405. org/10.3390/pharmaceutics11080405.
  10. Matczuk AK, Chodaczek G, Ugorski M. Production of Recombinant EAV with Tagged Structural Protein Gp3 to Study Artervirus Minor Protein Localization in Infected Cells. 2019 Aug 9;11(8). pii: E735. doi.org/10.3390/v11080735.
  11. Junka A, Żywicka A, Chodaczek G, Dziadas M, Czajkowska J, Duda-Madej A, Bartoszewicz M, Mikołajewicz K, Krasowski G, Szymczyk P, Fijałkowski K. Potential of Biocellulose Carrier Impregnated with EssentialOils to FightAgainstBiofilmsFormed on Hydroxyapatite. Sci Rep. 2019 Feb 4;9(1):1256. org/10.1038/s41598-018-37628-x.
  12. Żywicka A, Wenelska K, Junka A, Chodaczek G, Szymczyk P, Fijałkowski K. Immobilization pattern of morphologically different microorganisms on bacterial cellulose membranes. World J MicrobiolBiotechnol. 2019 Jan 2;35(1):11. org/10.1007/s11274-018-2584-7.
  13. Mikolajewicz K, Chodaczek G. Going deeper: three-dimensional study of γδ T cells in mouse reproductive tract using tissue clearing methods. Immunol Cell Biol. 2019 Jan;97(1):104-111. org/10.1111/imcb.12202.
  14. Motola M, Dworniczek E, Satrapinskyy L, Chodaczek G, Grzesiak J, Gregor M, Plecenik T, Nowicka J, Plesch G. UV light-induced photocatalytic, antimicrobial, and antibiofilm performance of anodic TiO2 nanotube layers prepared on titanium mesh and Ti sputtered on silicon. Pap. 2018. doi.org/10.1007/s11696-018-0667-4.
  15. Żywicka A, Junka AF, Szymczyk P, Chodaczek G, Grzesiak J, Sedghizadeh PP, Fijałkowski K. Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. 2018 Nov 1;199:294-303. doi.org/10.1016/j.carbpol.2018.06.126.
  16. Dydak K, Junka A, Szymczyk P, Chodaczek G, Toporkiewicz M, Fijałkowski K, Dudek B, Bartoszewicz M. Development and biological evaluation of Ti6Al7Nb scaffold implants coated with gentamycin-saturated bacterial cellulose biomaterial. PLoS One. 2018 Oct 24;13(10):e0205205. org/10.1371/journal.pone.0205205.
  17. Weżgowiec J, Kulbacka J, Saczko J, Rossowska J, Chodaczek G, Kotulska M. Biological effects in photodynamic treatment combined with electropermeabilization in wild and drug resistant breast cancer cells. Bioelectrochemistry. 2018 Oct;123:9-18. org/10.1016/j.bioelechem.2018.04.008.
  18. Zygmunt BM, Węgrzyn A, Gajska W, Yevsa T, Chodaczek G, Guzmán CA. Mannose Metabolism Is Essential for Th1 Cell Differentiation and IFN-γ J Immunol. 2018 Jul 20. doi.org/10.4049/jimmunol.1700042.
  19. Doskocz J, Drabik D, Chodaczek G, Przybyło M, Langner M. Statistical Analysis of Bending Rigidity Coefficient Determined Using Fluorescence-Based Flicker-Noise Spectroscopy. J Membr Biol. 2018 Jun 1. org/10.1007/s00232-018-0037-8.
  20. Kupczyk P, Reich A, Gajda M, Hołysz M, Wysokińska E, Paprocka M, Nevozhay D, Chodaczek G, Jagodziński PP, Ziółkowski P, Szepietowski JC. UCHL1/PGP 9.5 Dynamic in Neuro-Immune-Cutaneous Milieu: Focusing on Axonal Nerve Terminals and Epidermal Keratinocytes in Psoriatic Itch. Biomed Res Int. 2018 Jul 25;2018:7489316. org/10.1155/2018/7489316.
  21. Chodaczek G, Toporkiewicz M, Zal MA, Zal T (2018) Epidermal T Cell Dendrites Serve as Conduits for Bidirectional Trafficking of Granular Cargo. Immunol. 2018 June 22;9:1430. doi.org/10.3389/fimmu.2018.01430.
  22. Orlowski P, Tomaszewska E, Ranoszek-Soliwoda K, Gniadek M, Labedz O, Malewski T, Nowakowska J, Chodaczek G, Celichowski G, Grobelny J, Krzyzowska M. Tannicacid-modifiedsilver and goldnanoparticles as novelstimulators of dendriticcellsactivation. Immunol. 2018 May 22;9:1115. doi.org/10.3389/fimmu.2018.01115.
  23. Borek A, Sokolowska-Wedzina A, Chodaczek G, Otlewski J. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers. PLoS One. 2018 Feb 8;13(2):e0192194. org/10.1371/journal.pone.0192194.
  24. Suchanski J, Tejchman A, Zacharski M, Piotrowska A, Grzegrzolka J, Chodaczek G, Nowinska K, Rys J, Dziegiel P, Kieda C, Ugorski M. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression. PLoS One. 2017 Sep 22;12(9):e0184970.org/10.1371/journal.pone.0184970.
  25. Sokolowska-Wedzina A, Chodaczek G, Chudzian J, Borek A, Zakrzewska M, Otlewski J. High-Affinity Internalizing Human scFv-Fc Antibody for Targeting FGFR1-overexpressing Lung Cancer. Mol Cancer Res. 2017 Aug; 15(8):1040-1050. org/10.1158/1541-7786.MCR-16-0136.
  26. Bazylińska U, Pietkiewicz J, Rossowska J, Chodaczek G, Gamian A, Wilk KA. Polyelectrolyte Oil-Core Nanocarriers for Localized and Sustained Delivery of Daunorubicin to Colon Carcinoma MC38 Cells: The Case of Polysaccharide Multilayer Film in Relation to PEG-ylated Shell. MacromolBiosci. 2017 May; 17(5). org/10.1002/mabi.201600356.
  27. Junka A, Fijałkowski K, Zabek A, Mikołajewicz K, Chodaczek G, Szymczyk P, Smutnicka D, Zywicka A, Sedghizadehf PP, Dziadas M, Młynarz P, Bartoszewicz M.Correlationbetweentype of alkalirinsing, cytotoxicity of bio-nanocellulose and presence of metaboliteswithincellulosemembranes. 2017; 157:371-379. doi.org/10.1016/j.carbpol.2016.10.007.
  28. Bzdzion L, Krezel H, Wrzeszcz K, Grzegorek I, Nowinska K, Chodaczek G, Swietnicki W. Design of small moleculeinhibitors of type III secretion system ATPaseEscN from enteropathogenic Escherichia coli. Acta Biochim Pol. 2017;64(1):49-63. org/10.18388/abp.2016_1265.
  29. Drabik D, Przybyło M, Chodaczek G, Iglič A, Langner M. The modified fluorescence based vesicle fluctuation spectroscopy technique for determination of lipid bilayer bending properties. BiochimBiophys Acta. 2015;1858(2):244-252. doi.org/10.1016/j.bbamem.2015.11.020.